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Supply-chain management has become a prominent area for teaching and research. Aca-
demics and managers realize that communication and coordination among members of a
supply chain enhance its effectiveness, creating financial benefits to be shared by the mem-
bers. We have collected numerical examples covering (1) location decisions, (2) centralized
warehousing, (3) lot sizing with deterministic demand, (4) demand forecasting, (5) pricing,
and (6) lot sizing with stochastic demand in a newsvendor environment. The examples are
suitable for classroom use, and they illuminate the rewards supply-chain members can obtain
by eliminating naturally occurring supply-chain inefficiencies and the costs of not doing so.

(Professional: OR/MS education. Supply-chain management.)

hen each member of a group tries to maximize

his or her own benefit without regard to the
impact on other members of the group, the overall
effectiveness of the group may suffer. Such inefficien-
cies often creep in when rational members of supply
chains optimize individually instead of coordinating
their efforts. Nowadays, companies should not act in
isolation, as success in the global marketplace requires
whole supply chains to compete against other sup-
ply chains (Davis 1994). Supply-chain members must
recognize the natural inefficiencies that may develop
and work to eliminate them, so that the supply chain
as a whole can compete effectively.

Real-world examples of supply-chain coordination
abound (Lee and Ng 1998, Munson et al. 1999).
More concretely, students of business can work
through numerical examples to better understand
and appreciate from a theoretical perspective the
simple but powerful concept of supply-chain coor-
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dination and its benefits. The examples we present
span issues of location, warehousing, inventory, infor-
mation sharing, and pricing. They are generally
simplified versions of ideas that can be found in the
literature tailored for classroom use. We introduce
each example with a nontechnical discussion of the
experiences of Isaac’s Ice Cream, a fictitious sole pro-
prietorship.

Examples 1 and 2 concern horizontal coordination,
that is, coordination among entities on the same level
of the supply chain. Examples 3 through 6 describe
vertical coordination, that is, coordination among enti-
ties on different levels of the supply chain (for exam-
ple, a retailer and its supplier).

Example 1: Location Decisions

Isaac’s Ice Cream had been selling very well in the city,
but Isaac wished to expand his market to reach sum-
mertime tourists by selling his ice cream from small
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Figure 1: In a four-mile stretch of road with five mile markers, (MMi,/ =0, ..., 4), the same number of cus-

tomers, n, cluster around each of the five mile markers. The franchise must decide where along the road to

locate two franchisees.

carts along the boardwalk on the beach. He offered
these “franchises” to two young entrepreneurs, Sally
and Pete. Isaac obtained permits allowing both carts
to locate anywhere along the four-mile boardwalk.
Moving these rolling stores to new locations entailed
essentially no setup cost. Believing that Sally and Pete
would know best where to locate because they were
close to the customers, Isaac allowed them to locate
anywhere they wished, suggesting only that they stay
out of each other’s way. On the first day, Sally took a
cart and told Pete that she would cover the north end
of the boardwalk and he could have the south end.
Pete agreed, and they went their separate ways.

Sally parked her cart about one mile from the
north end of the boardwalk. Morning sales were
steady; however, she noticed that the only buyers
were those walking from the north end, while quite
a few strollers walking past from the south already
had ice cream. So, Sally walked a few hundred yards
south and, to her dismay, noticed that Pete’s cart was
right there, almost three full miles from the south
end. Infuriated, Sally snuck around Pete’s back and
set up her cart in a new location about 300 yards
south of Pete. Similar maneuvering continued back
and forth all day. At 5:00, Isaac found Sally and Pete’s
carts right across from each other halfway down the
four-mile boardwalk. The two were covered with ice
crecam, apparently from an altercation. People strolled
by, refreshments from nearby concession stands in
hand. What happened?

A franchise has multiple outlets to serve customers,
spread out over a town, a state, a country, or even
multiple continents. To maximize market coverage,
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franchisors generally strive for many locations, even
if their market areas overlap (Marsh 1992). How-
ever, the franchisees who own the individual out-
lets generally want to maximize their market access,
and they do not want their service areas cannibal-
ized by another franchisee. Therefore, the franchisor
may sometimes need to control the allocation of ter-
ritories served or the locations of the franchisees. In
one case, KFC tried to appease franchise owners by
offering a pass-through royalty equal to two percent
of the sales made by new outlets opening near them
(Ruffenach 1992). Sally and Pete’s conflict illustrates
the detrimental effects to individual franchisees and
the entire franchise of letting franchisees choose their
own locations. Game theory texts (for example, Ras-
musen 1989) include more general Hotelling models
(games).

Suppose that a franchisor wishes to open fast-food
restaurants along a stretch of road four miles long.
Potential customers cluster along mile markers (MM)
0, 1, 2, 3, and 4, with n customers in each cluster
(Figure 1). Customer demand is sensitive primarily to
distance traveled. Specifically, for each customer, D =
a(b—d), where D = weekly demand, a is a constant >
0, b is a constant > 4, and d is the distance traveled in
miles. Both the franchisor and the franchisees wish to
maximize weekly demand.

Case 1: Two Franchisees Whose
Locations Are Coordinated by
the Franchisor

If the franchisor can locate the two franchisees any-
where along the four-mile stretch of road, total
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demand for the entire franchise will be maximized
when the first franchise (F1) is located at mile
marker 1 (MM1) and the second (F2) is located at mile
marker 3 (MM3). (We can easily verify this result by
enumerating the possible scenarios.)

The total distance customers travel will be 3n miles,
and total franchise demand will equal na(b —1) +
na(b—0)+na(b—1)+na(—0)+na(b—1) =na(5b-3).
As we might expect, this demand exceeds that obtain-
able by only one franchisee. In the single-franchisee
case, simple enumeration shows that the location of
the single franchisee should be at MM2, and the
franchise demand will equal na(b —2) +na(b —1) +
na(b —0) +na(b—1) +na(b —2) = na(56 — 6).

Case 2: Two Franchisees That
Control Their Own Locations

In this case, F1 and F2 act in their own interest to
maximize their own demand, knowing that the other
franchisee exists and then reacting accordingly. With-
out loss of generality, assume that F1 chooses its
location first. To maximize its own demand, it will
locate at MM2. F2 then has two choices: (1) to also
locate at MM2, or (2) to locate somewhere other than
MM2. If F2 also locates at MM2, the two franchisees
will share the demand of na(5b —6), and each will
end up with half of it. On the other hand, F2 could
capture the entire demand from two other locations,
say MMO and MM1, by locating somewhere between
them (say MMO+0.5). In that case, F2’s total demand
would be na(b—0.5) +na(b —0.5) = na(2b — 1), which
is less than its MM2 location demand of na(5b—6)/2 =
nal[(5/2)b — 3] = na[2b+ (b/2 — 3)] > na(2b — 1), since
b>4.

Therefore, assuming that demand is primarily a
function of distance, two rational franchisees choosing
their locations simultaneously to maximize their own
profits will both locate at the midpoint of the stretch
of road, sharing the same total franchise demand,
na(5b — 6), that one franchisee alone would have had.
On the other hand, either through contractual agree-
ment or through the franchisor’s direction and coor-
dination, the two franchisees can cooperate and locate
at MM1 and MM3 (Case 1). Both will then experience
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greater demand, and the total franchise will receive a
demand of na(5b —3).

Example 2: Centralized
Warehousing

Over time, Isaac’s Ice Cream has grown and now sells
certain products through 200 company-owned retail
outlets split equally between two states. In both states,
[saac leases warehouse space for storage of goods
strictly by the square foot. In the firm'’s first state of
operation, it leased warehouse space near each shop.
However, when Isaac expanded to the second state
he tried storing goods for all 100 shops in that state
at a central location. Although transportation costs
and lead times are somewhat higher in the second
state, Isaac is puzzled when he reviews his books
because the second state performs much better on cer-
tain other criteria.

While each of the 100 warehouses in the original
state stores fewer goods and has fewer orders to fill
than the centralized warehouse in the second state
does, the sum of the individual warehouse costs is
much larger. In fact, the total warehousing costs are
90 percent lower in the second state. Isaac has heard
of economies of scale, but this result surprises him
because he is not paying any fixed land or building
costs at the warehouses; he pays only for storage
space and ordering and receiving costs. In addition,
the firm has always carried safety stock to protect
against unusually high demand. For consistency, Isaac
keeps the same amount of total system safety stock in
both states. To his surprise, stores in the original state
receive 70 percent service, while stores in the new
state receive (essentially) 100 percent service. “How
can this be?” Isaac wonders. “"How can centraliza-
tion dramatically decrease my costs while dramati-
cally increasing my service level?”

In this example, we consider two benefits of cen-
tralized warehousing: (1) economies of scale in setup
and holding costs, and (2) risk pooling in a stochastic-
demand environment. Centralized warehousing can
be implemented by single companies for their field
sites, franchisors for their franchisees, or even suppli-
ers for their competing customers.
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Economic Order Quantity Costs

The economic-order-quantity (EOQ) model nicely
illustrates the economies-of-scale benefits of central-
ization. For simplicity, assume that each client (retailer
or franchisee) has the same holding cost H, setup
cost S, and annual demand D. Further assume that
the supplier’s (or central warehouser’s) holding and
setup costs are also H and S, respectively. The
EOQ cost for each client warehousing on its own is
~/2DSH. For N clients, the total EOQ costs for that
level of the supply chain are Nv/2DSH. On the other
hand, if the supplier combines the demands of every
client and warehouses the items centrally, then the
total EOQ costs are /2(ND)SH.

Therefore, the savings percent for the channel
obtainable from centralized warehousing is

(N—+N)Vv2SDH _ e VN
N+2SDH N’

Thus, with only four client sites, the channel saves 50
percent on holding and setup costs. The amount rises
to 80 percent for 25 sites and 90 percent for 100 sites.
(Obtaining these savings may require additional costs
for centralization, such as increased transportation.)

Risk Pooling—Newsvendor
Environment

Eppen (1979) illustrates the risk-pooling benefits
(“statistical economies of scale”) of centralized ware-
housing in a one-period newsvendor environment
with normal probability distributions. Evans (1997)
and many other authors of operations management
textbooks describe how to determine the optimal
order quantity in this environment to minimize
expected overage and underage costs. Eppen (1979)
shows that firm i choosing its optimal order quan-
tity has expected overage and underage costs equal
to Ko;, where o; is firm i's standard deviation of
demand. (Eppen gives the value of K, but it is not
needed for classroom use of this example.)

If we assume that each client has the same over-
age and underage costs per unit, and the same, but
independent, normal probability demand distribution
with mean g and variance o2, then each client ware-
housing on its own has total expected overage and
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underage costs of Ko. For N clients, the total expected
overage and underage costs for that level of the sup-
ply chain are NKo. On the other hand, if the supplier
combines the demands of its clients and warehouses
the items centrally, the demand distribution for all
clients combined is also normal with mean Nu and
variance No?, and the total expected overage and
underage costs are Kv/No2 = +/NKo. Just as in the
EOQ example, the savings percent equals 1 —+/N/N.

Risk Pooling—Safety Stocks and
Service Levels

Students of business typically learn how to compute
safety stocks under continuous-review and periodic-
review inventory systems with normally distributed
demands (Krajewski and Ritzman 2002). Specifi-
cally, the safety stock equals zo, where z represents
the number of standard deviations above the mean
needed to achieve a desired cycle service level and
o is the standard deviation of demand over the pro-
tection interval. By using centralization, the supplier
(1) can decrease the total system safety stock, or
(2) can increase service levels using the same total
system safety stock.

If we assume that each of N clients has the same,
but independent, normal probability demand distri-
bution with mean u and variance ¢?, then the total
amount of safety stock for that level of the supply
chain is Nzo. On the other hand, if the supplier com-
bines the demands of all the clients and warehouses
the items centrally, the demand distribution for all
clients combined is also normal with mean Nu and
variance No?, and the total amount of safety stock is
27/ No?2=+/Nzo. As in the EOQ example, the savings
percent equals 1—+/N/N.

If instead the centralized warehouser keeps the
total safety stock the same as the clients did ware-
housing on their own, the new higher z-value can
be imputed as follows: Nzy0 = v/ Nz, 0, OF Zpp =
v/Nz,,. By coordinating just a few clients, a supply
chain can attain a much higher level of service with
the same amount of safety stock (Table 1).

The percent of cost savings from centralizing safety
stocks varies with the number of clients (Table 2).
These savings are applicable to all three situations:
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Cycle Service Level

Number of 70.00% 80.00% 90.00%
Clients (V) (Zyg =0.5244) (2, =0.8416) (2,0 = 1.2816)

2 77.08% 88.30% 96.50%

3 81.81% 92.75% 98.68%

4 85.29% 95.38% 99.48%

5 87.95% 97.01% 99.79%

6 90.05% 98.04% 99.92%

7 91.73% 98.70% 99.97%

8 93.10% 99.14% 99.99%

9 94.22% 99.42% 99.99%

10 95.14% 99.61% 100.00%

1 95.90% 99.74% 100.00%

12 96.54% 99.82% 100.00%

13 97.07% 99.88% 100.00%

14 97.51% 99.92% 100.00%

15 97.89% 99.94% 100.00%

25 99.56% 100.00% 100.00%

50 99.99% 100.00% 100.00%

100 100.00% 100.00% 100.00%

Table 1: This table displays the cycle service levels obtained from central-
izing decentralized service levels of 70, 80, and 90 percent. For the same
level of safety stock, centralized warehousing provides an increased cycle
service level according to the formula z,,, = /N z,,.

Number of Cost
Clients (V) Savings (%)

2 29.29

3 42.26

4 50.00

5 55.28

6 59.18

7 62.20

8 64.64

9 66.67

10 68.38

11 69.85

12 7113

18 72.26

14 73.27

15 74.18

25 80.00

50 85.86

100 90.00

1,000 96.84

Table 2: With regard to (1) EOQ costs, (2) newsvendor model costs, or (3)
safety-stock costs under continuous or periodic review systems, central-
ized warehousing reduces those costs by a percentage equal to 1— /A//N.
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(1) EOQ costs, (2) newsvendor model costs, and
(3) risk pooling of safety stocks. Clearly, coordinating
just a few clients can produce significant savings.

Example 3: Coordinated Lot Sizes
with Deterministic Demand

Isaac’s Ice Cream produces 1 million boxes of a spe-
cial frozen treat per year exclusively for a large gro-
cery chain. The chain has been ordering 8,165 boxes
at a time (presumably its EOQ) approximately every
three days. In college, Isaac heard that manufactur-
ers should produce in an integer multiple of demand
when orders are lumpy. Because this product has an
expensive setup cost and a very fast production rate,
Isaac has found it cheapest to produce 48,990 boxes
at a time (every 18 days).

This lumpy demand seems beneficial; Isaac notices
that his total annual setup and holding costs amount
to $91,856, whereas the EOQ model tells him that his
costs would be $100,000 if demand were not lumpy.
That revelation makes him wonder, “Is my incom-
ing demand lumpy enough? If my customer ordered
larger amounts less frequently, would I save even
more money?” Realizing that his firm could also pro-
duce about 49,000 units at a time by making four
times incoming orders of 12,250 units, Isaac computes
the costs and learns that he could save $4,086 by
doing so. He wonders whether passing some of the
savings along to the grocery chain in the form of a
quantity discount would induce the chain to increase
its order size accordingly.

Most students learn about the EOQ model and pos-
sibly some of its extensions, such as the EOQ with
finite production rate or the EOQ with all-units quan-
tity discounts (Krajewski and Ritzman 2002). How-
ever, they seldom explore the effect that those lumpy
orders of size Q* have on the suppliers. While opti-
mal for a retailer acting alone, the EOQ is seldom
optimal for a supply chain consisting of the retailer
and its supplier. Based on this realization, Hewlett-
Packard uses a mathematical program to determine
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inventory levels for some products at both its dis-
tribution centers and dealer stores, thereby minimiz-
ing systemwide inventory levels (Lee and Billington
1995).

In this example, we assume that a single retailer
operates under the typical EOQ assumptions, and it
purchases its product from a single supplier (with an
essentially infinite production rate). Under these con-
ditions, it is optimal for the supplier’s lot size to be
an integer multiple, n, of the retailer’s lot size (Lee
and Rosenblatt 1986).

Notation

D = annual demand.

S, = supplier’s setup cost.

S, =retailer’s setup cost.

H, = supplier’s annual holding cost per unit.
H, = retailer’s annual holding cost per unit.
Q =retailer’s order size.

n = supplier’s integer lot-size multiplier.

nQ = supplier’s lot size.

|x] = the greatest integer < x.

From Munson and Rosenblatt (2001), we can derive
the following formulas. Total annual supply-chain
holding and setup costs are equal to

()5 £ 3o (3o

The first two terms represent the supplier’s annual
setup and holding costs, respectively, and the second
two terms represent the retailer’s annual setup and
holding costs, respectively.

When the parties optimize independently, the
retailer orders Q* and the supplier orders n*Q*, where

2DS,
H

1

Q=
and

. |1 8DS,
e HE

When they optimize jointly, they go through three
steps:
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Step 1: Compute

" 1 4Ss(Hr_H>)

Step 2: Compute

S=8S/n*+S, and H=(n*—1)H,+H,.

Step 3: Compute

Q*=,/2DS/H.
The terms S and H represent the system setup cost
per retailer’s order and the annual holding cost per
unit for the system, respectively. The retailer orders
Q* and the supplier orders n*Q*. At those quantities,
the total system setup and holding cost equals TC* =
V2DSH.

For example, consider a product with an annual
demand of 25,000 units, S, = $200, S, = $40.50, H, =
$2.00, and H, = $2.50.

If the firms act independently, the retailer will order
its EOQ of 900 units, and n* will equal 3, implying
that the supplier’s lot size will be 3(900) = 2,700 units.
The total system cost of these lot sizes equals $5,902,
and the retailer’s portion is $2,250.

On the other hand, if the firms optimize jointly,
n* =1, S =$240.50, H = $2.50, and Q* = 2,193 units.
Thus, the retailer orders 2,193 units and so does the
supplier (1(2,193)). The total system cost using these
values is $5483, which is 7.1 percent lower than
the cost when the firms do not coordinate.

The supplier’s costs decrease with joint optimi-
zation by $3,652 — $2,280 = $1,372. However, the
retailer’s costs increase (because it no longer orders
its EOQ) by $3,203 —$2,250 = $953. Therefore, some
of the supplier’s savings should be redistributed in
compensation to the retailer. A quantity discount for
ordering 2,193 units instead of 900 units is an excel-
lent way to entice the retailer to agree to this change
in policy. Monahan (1984), Lee and Rosenblatt (1986),
and Weng and Wong (1993) present generalized ver-
sions of this problem. Munson and Rosenblatt (2001)
show that the savings continue to grow when the sup-
ply chain is expanded to three levels by including the
supplier’s supplier in the model.
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Cost Savings from

S./S, O 0 Coordination (%)
1 1.41 5.72
2 .78 13.40
3 2.00 20.00
4 2.24 25.46
5 2.45 30.01
6 2.65 33.86
7 2.83 37.15
8 3.00 40.00
9 3.16 4250
10 B2 44,72
15 4.00 52.94
20 458 58.34
50 714 72.53
100 10.05 80.29

Table 3: This table displays the benefits from lot-sizing coordination
hetween a retailer and its supplier when the supplier uses a lot-for-lot
production policy. The retailer should increase its order size by a factor
of \/S,/S, +1 (Monahan 1984). The system percentage cost savings from
coordination equals 1 —[(2,/S,/S, +1)/(2+S,/S,)].

In the special case in which the supplier always
utilizes a lot-for-lot production policy (n* = 1), the
benefits of coordination increase as the ratio of the
supplier’s setup cost to the retailer’s setup cost
increases (Table 3). Other things being equal, it is
more important to the supply chain for the retailer to
increase its order size when a lot-for-lot supplier has
a large setup cost.

Example 4: Coordinated Demand
Forecasting

Isaac’s Ice Cream sells certain ice cream sandwiches
to regional food wholesalers who distribute them
through local grocery stores. Isaac’s sister Janet sup-
plies most of the primary ingredients. One day Janet
and Isaac met for their annual review. The whole-
salers had been complaining to Isaac about late deliv-
eries, yet eight times during the last year he was
forced to purchase extra storage space for finished
goods because he had run out of room at the factory.
He had been late with many deliveries because the
supplies from Janet had arrived late to him.

“It’s not my fault,” Janet exclaimed. “I'm running a
small company. I do have other customers, and I can’t
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just drop everything to fill your orders. We go for
weeks at a time hearing nothing from you, and then
all of a sudden you place an order for three months’
worth of demand. I don’t get it. One of your grocery
retailers gave me data on her sales of your ice cream
sandwiches last month. Other than a few spikes on
weekends, her sales have been very steady. Yet I never
know what to expect from you. I can’t afford to hold
inventory for you for months at a time. Do you have
steady sales at all of the grocery outlets? If so, why
do I get these crazy orders from you? I never know
what to expect! We’re family. Talk to me!”

Many business school students get the opportu-
nity to play the beer game during their college
careers (Sterman 1989, 1992). In this popular role-
playing game, students act out the roles of a retailer,
wholesaler, distributor, or manufacturer in a supply
chain who are determining order sizes in attempts
to minimize back-order and inventory-holding costs.
Although players are rewarded based on the total
costs of their team, they invariably play the game
by focusing on minimizing their own costs indepen-
dently. An important feature of the game is that the
members of the supply chain can communicate only
through the orders they place, that is, only the retailer
sees the final consumer demand.

Typically the game results in wide oscillations in
inventory, back orders, and order sizes, which are
most pronounced for the upstream players, that is, for
the distributor and especially for the manufacturer.
Procter and Gamble executives have coined the term
bullwhip effect to describe this phenomenon in their
firm’s supply chain. Lee et al. (1997b) have identified
four major sources of the bullwhip effect that are con-
sistent with rational managerial behavior: (1) demand
forecast updating, (2) order batching, (3) price fluctu-
ation, and (4) rationing and shortage gaming. Kamin-
sky and Simchi-Levi (1998) report the results of a com-
puterized beer game that allows for easy manipula-
tion of some of the game’s parameters. They have
successfully used the game in classroom settings.

Examples abound of high-profile manufacturers
suffering the impacts of poor forecasting. For instance,
in the mid-1990s, IBM and Apple Computers made
forecast errors that caused them huge losses and
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eroded their market shares. The effects rippled up
and down their supply chains (Fisher et al. 1997).
To improve forecasting, some firms have strived to
increase information sharing throughout their supply
chains. For example, JCPenney has reported almost
daily communications for one of its clothing lines
back through the manufacturer (Robinson Manufac-
turing), the textile mill (Milliken and Company), and
even the fiber producer (Du Pont) (Thornton 1995).
Using a simplified beer game setting with no player
discretion, we can unambiguously demonstrate the
benefits of coordinating demand forecasts. Lee et al.
(1997a, b) suggest sharing information about con-
sumer demand with all supply-chain members or
having one member perform forecasting for all the
members. Students can gain an understanding of
the potential power of this strategy by building two
spreadsheet models, one with forecasting by the indi-

vidual players and the other with all players using
the retailer’s forecasts.

Our model illustrates a two-firm channel using sim-
ple (naive) forecasting and one-period lead times. It
can be extended to include more channel members,
more complicated forecasting schemes, or longer lead
times, as desired by the instructor. We simulate a 20-
period game with a retailer receiving orders from con-
sumers and placing orders with its wholesaler. The
wholesaler has unlimited production capacity. A one-
period lead time applies to all orders. We use naive
forecasts, that is, we use this period’s demand as the
next period’s forecast. Both players use an order-up-
to policy, in which the order size equals next period’s
forecast minus the inventory position, which includes
current inventory plus scheduled receipts minus back
orders. In each period, the retailer moves first and the

A B C D | E | F G | v | 1 ] ] | K I
1 Retailer : |Wholesaler |
2 | Next - 1 ‘ ] Next } | ‘ ‘

3 Consumers'| Period's | On-Hand | | Order | In-Transit | Period's | On-Hand | Order | In-Transit
4 [Period] Orders | Forecast | Inventory |Back Orders, Placed ’ Inventory | Forecast | Inventory |Back Orders‘ Placed | Inventory
5 oﬁ . 5 0 1 5 ‘ 5| 0 J 5
(6] 1 5| 5 B 0 0 of 0| 10| 0 0 0
7 2 5 B 0 0| 5 5 5| 5| 0 0 0
18] 3 5 5| 0 0] 5 5 5| 0 0 5] 5
9| 4 5 5 0 [} 5 - e 0 0 5] 5
10 5| 51 5l s 0] 0 - sl 5 0| 0 5 5
11} 6 20 20| 0 15| 35 = 35} 0 30, 65| 65
(2] 720 20 o 30f 2o sof 20l 5| 0 5 5
13 8l 20| 20 0 0 200 20 20| 0 0 20 20
4] of 200 20 o o 200 20 = 20 0 0 20 20
[1s] 1of 20 20 o 0 20 20 20 0 0 20 20
16| 11} 0]~ 50 0| 30 80 200 80| 0 60| 140 140
e 30 30 0 40| 10 70 10 70| 0 0 0
18] 13 30 30 0l 0 30 30 30 40| 0 0 0
9] 14 30 3 o o 30 0 30 10 0| 20 20
200 15 30 30 0 o 30 30 30 0 0l 30 30
21 1] 10] 10 20 0 0 | o 30 0 0 0
221 17f  10] 10/ 10| 0| 0 0 0| 30, 0 0 0
[ 23 | 18 50 50 0 40# 90: 30 90 0 60 150‘ 150
24| 19 10 10| 0 20| 0| 60 0 90’ 0 0 0
25| 20 10| 10 30 0 0 0 0| 90| 0 0 0
26 |Total o 70| 175] / 410] l 395 150] J 490
Figure 2: The Excel Microsoft simulation of a simplified beer game displays inventory and back orders for a

two-firm supply chain with forecasting based on each party’s own demand. We provide formulas in Table 4.
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Al B | ¢ T p J E J F ] G H 1 J K I

31 ‘ Retailer 1 Wholesaler |

32| | Next | | ‘ Next |

| 33 | Consumers'| Period's | On-Hand | Order | In-Transit | Period's | On-Hand | Order | In-Transit
34 [Period] Orders | Forecast | Inventory |Back Orders| Placed | Inventory | Forecast ’ Inventory |Back Ordersi Placed | Inventory
135] o | | 5! 0 5 “ 5 0] ‘\ 5
EI 5] 5| 5 0 0 0 5] 10 0 0 0
37 2 5| 5] 0 0 5] 5 5| 5 0 0 0
38] 3 5| 5| 0 0 5 5 5| 0 0 5] 5
139] 4 5| 5] 0 0 5 5 5 0 0 5] 5
(40 5 5| 5 0 0 5 5 5 0 0 5‘ 5
[41] 6 20| 20 0 15| 35 5| 20 0 30/ 50| 50
| 42 | 7 20| 20 0 30 20 50 20 0 0 20/ 20
23] 8 20 20 0 0 20 20} 20‘ 0 0 20 20
[44] 9 20| 20 0 0 20 200 20 0 071," 20| 20
45| 10 20| 20 0| 0 20 20 20 0| 0 20| 20
46| 11 50| 50| 0 30, 80 20§ 50/ 0 60! 10l 110
[47] 12 30, 30, 0 40| 10 70 30 40| 0 0| 0
(48] 13 30 30 0 0 30 30 30 10 0 20'” 20
49| 14 30, 30 0| 0 30/ 30 30 ol 0 30| 30
[50] 15 30 30 0 0 30 30 30| 0 0 30/ 30
[ 10| 10, 20, 0 0 0 10; 30 0 oi 0
52| 17 10, 10 10 0 0l 0 10‘ 30| 0 0 0
E 18 50 50 0 40 90 30 50, 0 60, 110‘ 110
(54| 19 10, 10, 0 20| 0 60 10| 50 0 0" 0
55 2oh 10, 10 30, 0! 0) oI 10, 50| 0 0 0
56 | Total | 70| 175] | 410 | 230 150 450

Figure 3: This Microsoft Excel simulation of a simplified beer game displays inventory and back orders for a two-
firm supply chain with forecasting for hoth parties based on the actual consumers’ orders. We provide formulas
in Table 4. Compared to Figure 2 (uncoordinated forecasting), the wholesaler’s total on-hand inventory is 42
percent smaller when demand information is shared.

wholesaler follows. Each player first moves in-transit
inventory, then fills back orders and new orders to
the extent possible, and then places new orders (to be
received in the succeeding period, subject to availabil-
ity). Both players begin with five units in inventory
and five units in transit (to be received in period 1).
This type of simulation can be shown in class or
given as a computer assignment for students. Fig-
ures 2 and 3 show the Microsoft Excel spreadsheets
used in our example. Table 4 presents the applicable
formulas. In Figure 2, the wholesaler’s forecast equals
the order received from the retailer in that period. In
Figure 3, the wholesaler’s forecast equals the retailer’s
forecast, which equals the consumer orders in that
period. Figure 3 represents sharing of demand or
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forecasting information between the parties. For this
example, when demand information is shared, the
wholesaler’s total on-hand inventory held over 20
periods is 165 units (42 percent) smaller than the
case of no information sharing. In the uncoordinated
case (Figure 2), the wholesaler is overreacting to the
retailer’s catch-up orders by assuming that future
underlying consumer demand will be larger than it
actually turns out to be. Lee et al. (1997a, b) provide
real-world examples of successful information shar-
ing among supply-chain members.

Example 5: Coordinated Pricing

Each year Isaac’s Ice Cream sells its special blend at
the state fair. The fair lasts for only a few days, and
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Cell Formula Explanation

C6 = B6 Retailer’s forecast equals this period’s consumer demand.

D6 = MAX(D5 + G5 — E5 — B8, 0) Retailer’s ending inventory after this period.

E6 = MAX(E5 + B6 — D5 — G5, 0) Retailer’s ending back orders after this period.

F6 = MAX(C6 — (D6 + J5 —E6), 0) Order-up-to policy = next period’s forecast — inventory position.
G6 = MIN(F6 +J5, I5+L5) Amount put into shipment from the wholesaler this period.

H6 =F6 Wholesaler’s forecast equals retailer’s order size this period.

16 = MAX(15+ L5 —J5—F6, 0) Wholesaler’s ending inventory after this period.

J6 = MAX(J5 +F6 — 15— L5, 0) Wholesaler's ending back orders after this period.

K6 = MAX(H6 — (16 — J6), 0) Order-up-to policy = next period’s forecast — inventory position.
L6 =K6 Assuming the wholesaler has infinite production capacity.
Change for Figure 3

H36 = B36 Wholesaler’s forecast equals this period’s consumer demand.

Tahle 4: These are the Microsoft Excel formulas for the forecasting simulation shown in Figures 2 and 3.

Isaac sells this particular item only at this annual fair.
Thus, he must determine ahead of time the appro-
priate quantity to produce and deliver. He sells the
ice cream through an independently operated booth
at the fair that sells many other food items. Isaac has
been successfully selling his special blend of ice cream
for a number of years, and, by monitoring the price
the booth charges consumers, he has determined that
demand is very price sensitive.

Last year Isaac charged his retailer $3.00 per pint,
and it cost him $1.00 per pint to produce. The retailer
charged $4.00 per pint and sold 2,000 units. The
retailer’s variable costs consisted primarily of the
wholesale price paid to Isaac. Isaac’s research indi-
cated that he could double sales to 4,000 units if the
retailer reduced the price to $3.00. The math seemed
simple to Isaac: “This year I'll lower the wholesale
price to $2.50 and tell my retailer to sell the ice
cream for $3.00 per pint. I'll earn $6,000 instead of
$4,000, and the retailer will still earn $2,000, so he
will be no worse off.” However, the retailer ignored
Isaac’s suggestion and only lowered the price to $3.75,
inducing a demand of 2,500 units. Compared to last
year, Isaac’s profits fell from $4,000 to $3,750, but
the retailer’s profits rose from $2,000 to $3,125. What
happened?

Students taking any introductory microeconomics
class learn that a monopolist will maximize profits by
following the golden rule of output determination, that

INTERFACES
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is, by selecting the output level at which marginal
revenue equals marginal cost (Mansfield 1983). But
what happens if a retailer and its supplier are both
monopolists and part of the retailer’s marginal cost
is the wholesale price? The supply chain loses money
when the firms do not coordinate their pricing but
instead rely on the traditional, sequential method in
which the supplier first sets the wholesale price and
the retailer reacts accordingly, as shown in Exam-
ple 5. This example is most appropriate for goods
that cannot be stored for long, that is, goods that
are perishable or have short life cycles. The computer
industry represents such an environment with short
and price-sensitive demand. Some computer firms
have suffered losses in recent years because of their
poor pricing and forecasting practices (Weng 1999).

Case 1: A System with One Retailer
and One Supplier

Let the retailer’s demand curve be P = 900 —2Q
(where P is the retail price and Q is the quantity
sold), and let the marginal costs (exclusive of whole-
sale price) be $10 and $90 for the retailer and sup-
plier, respectively. Total revenue for the retailer is
P x Q=900Q —2Q?* Marginal revenue is the deriva-
tive of total revenue with respect to Q, which equals
900 —4Q. If the firms are considered as one organi-
zation, then the optimal quantity Q* solves marginal
revenue = marginal cost: 900 —4Q = 100, or Q* =
200. A $500 price induces a demand of 200 units, so
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the total channel profits are 200[$500 — ($10 + $90)] =
$80,000.

Next, consider independent optimization. The sup-
plier knows that the retailer will set marginal rev-
enue equal to marginal cost, that is, 900 —4Q = 10+
W, where W is the wholesale price charged to the
retailer. So, the supplier faces a demand curve from
the retailer of W =890 —4(Q. With this linear demand
function, the supplier’s total revenue is W x Q =
890Q —4Q?, and the marginal revenue should equal
the supplier’s marginal cost, that is, 890 —8Q = 90,
implying that Q* = 100. After plugging Q* into the
supplier's demand function, the profit-maximizing
wholesale price becomes W* = 890 —4(100) = $490. Of
course, with a wholesale price of $490, the retailer will
also maximize profits by selling 100 units, which will
be induced by a retail price of P* =900 —2(100) =
$700. With these values, the supplier’s profit equals
100($490 — $90) = $40,000, which is one-half of the
amount achievable through cooperative optimization.
Furthermore, the retailer’s profit equals 100[$700 —
($10 + $490)] = $20,000, which is one-fourth of the
amount achievable through cooperative optimization.
Total channel profits are $40,000 + $20,000 = $60,000.
Cooperative optimization produces $20,000 (33 per-
cent) more than independent optimization would pro-
duce. (It can be shown (Appendix) that the 33 percent
profit increase holds for any linear demand function
and associated marginal costs.)

In class, it is also interesting to see if students can
determine ways to achieve the desired cooperation
between the retailer and the wholesaler. The goal is to
get the retailer to sell 200 units by setting a retail price
of $500. However, the retailer will not comply as long
as the wholesale price remains $490. The actual coop-
eration mechanism used will depend on the relation-
ship between the two firms and their relative power.
Students may come up with such ideas as the sup-
plier imposing a retail price of $500 or a minimum
order quantity of 200 units. In addition, either firm
could vertically integrate to eliminate the problem.

A quantity discount approach represents an excel-
lent coordination mechanism. If the retailer actually
did lower its price to $500, then the retailer’s profit
would become $0, but the supplier’s profit would
double to $80,000. Now there are $20,000 of new chan-
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nel profits to share between the two parties. Any all-
units quantity discount between $100 and $200 per
unit for orders of size 200 will create $20,000 of new
wealth for the channel, and neither firm will be worse
off than with no discount. For example, a discount
of $100 per unit would allocate all of the new prof-
its to the supplier, a discount of $150 per unit would
evenly split the increased profits, or a discount of $200
per unit would allocate all of the new profits to the
retailer. (Jeuland and Shugan 1983 provide a general-
ized version of this problem.)

Students may wonder why the supplier does not
simply lower W to the point where 200 units max-
imizes the retailer’s profit. To find that W, set the
retailer’s marginal revenue equal to its marginal
cost, that is, 900 — 4(200) = 10+ W, or W* = $90. At
this wholesale price, total channel profits are indeed
$80,000, but the retailer captures all of it while the
supplier’s profit equals $0. Thus, while lowering W
always helps the total channel, it always hurts the
supplier, who would likely be unwilling to comply
unless the retailer somehow transferred some money
back. A quantity discount avoids such complications.

Case 2: A System with One Retailer
and N —1 Supplier Tiers

Consider a supply chain with one retailer and N —1
supplier tiers. For example, a supply chain consisting
of a retailer, the retailer’s supplier, and the retailer’s
supplier’s supplier would contain two supplier tiers.
If the retailer has a linear demand curve of the form
P=a—bQ (a,b > 0), the system percentage profit
increase from coordinated pricing vs. individual opti-
mization is

22N—2 s 2N ok 1

2N —1 '

(The proof is in the Appendix.) Substantial potential
benefits to system profits from coordinating pricing
are particularly prevalent in supply chains with mul-
tiple tiers (Table 5).

Example 6: Coordinated
Newsvendor Lot Sizes

Isaac’s Ice Cream sells “homemade” vanilla shakes
daily at Sunnyside Park during the summertime. The
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Number of Supplier Profit
Tiers (N —1) Increase %
1 33.33
2 128.57
3 326.67
4 725.81
5 1,525.40
6 3,125.20

Table 5: This table dispiays the benefits from coordinated pricing between
a refailer and its V — 1 tiers of single suppliers when the retailer has
a linear demand curve of the form P = a— bQ (a,b > 0). The system
percentage profit increase equals (22V-2 — 2V 1) /(2¥ —1).

pint-sized shakes are sold by the driver of an ice
cream truck who stores the mixture in a cooler that
keeps it frozen for only a few hours. After that, the
driver can sell any remaining (melted) mixture to
Pete’s Pig Farm for 87.5 cents per pint. The truck
driver places her order at night and makes one trip
to Isaac’s factory the next morning on her way to the
park. Isaac produces exactly the amount ordered. The
driver pays Isaac $2.00 per pint, and she sells it in
shake form for $4.00 per pint. (Her other marginal
costs for these shakes are minimal.) Daily demand
seems to vary fairly evenly (that is, with no noticeable
mode) between 50 and 250 units. Isaac produces the
mixture at a cost of $1.00 per pint.

Home for the summer from business college, the
truck driver’s daughter tells her that the best possi-
ble amount for her to order every day is 178 pints.
However, Isaac’s son attends the same business col-
lege, and he is convinced that the truck driver should
be trying to sell 242 units per day. Obviously, Isaac’s
expected profits would rise, but that order size seems
very risky for the truck driver, so her expected profits
would likely fall. How can Isaac convince the truck
driver to order so many more units? And if he com-
pensates her for the greater risk, will any excess prof-
its remain for him?

In Example 2, we explored the risk-pooling bene-
tits of horizontal coordination in a newsvendor envi-
ronment. In this example, we explore the benefits of
vertical coordination in a supply chain consisting of
a single retailer and a single supplier. One way that

INTERFACES
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supply-chain members share risks is by having the
supplier sell some goods on consignment, whereby
the goods remain the supplier’s property even though
located at the retailer. Businesses with very uncertain
demand, such as jewelers, may be particularly likely
to promote consignment (Munson et al. 1999).

The newsvendor problem is often taught in intro-
ductory operations management classes. The problem
arises when a retailer must make a one-time pur-
chase of a single product to meet uncertain customer
demand. For a simple one-level newsvendor prob-
lem, if we let O denote the overage cost per unit
and U denote the underage cost per unit, the optimal
order size Q* is chosen such that F(Q*) = U/(O+ U),
where F(x) is the cumulative distribution function of
the random customer demand X (Evans 1997). How-
ever, the order quantity that maximizes profits for
the retailer may not maximize the total supply-chain
profits when we also consider the cost structure of
the retailer’s supplier. Example 6 illustrates how to
coordinate lot sizes in a two-level newsvendor envi-
ronment. We show that risk pooling via vertical coor-
dination leads to higher order quantities (with a lower
risk of unmet demand but a higher risk of ending
with excess supply) and, more important, leads to
higher profits for the channel.

We assume that the supplier has a lot-for-lot policy
and will order and sell to the retailer the amount the
retailer requests. Let P, and P, be the prices charged
by the supplier and retailer, respectively. Let C; be
the supplier’s manufacturing cost per unit, and let C,
be the retailer’s cost per unit, exclusive of purchasing
cost P,. Let V be the salvage value of any unsold units
at the end of the selling season. Let Q* and Q% be the
optimal order size under a coordinated system and
an uncoordinated system, respectively. (We derive the
following results in the Appendix.)

If the retailer acts independently, the lot size should
be chosen such that F(Q}) = (P, — C, — P,)/(P, — V).
The lot size in a coordinated system should be chosen
such that F(Q¥) = (P, — C, — C,)/(P, — V). The (non-
negative) profit increase for the supply chain due to
coordination is

o
(Pr—Cs_cr)(Q:—Qz)_(Pl'—V)L* F(x) dx.
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The order size will be increased when there is coor-
dination between the two firms because C, < P,. The
supplier’s profits increase with the joint optimization,
but the retailer’s profits decrease. Therefore, some of
the increase in total channel profits should be redis-
tributed to the retailer as an incentive for coordination
through quantity discounts or some other method.

Typical classroom examples illustrate the basic
newsvendor problem by using either the normal or
the uniform distribution. We can use the following
equation using the Excel commands NORMSDIST
and NORMDIST to approximate the expected profit
of ordering Q units when the demand is normally
distributed with mean w and standard deviation o
(modified from Chopra and Meindl 2001):

7= (U+0) [M .NORMSDIST (%)

— o -NORMDIST (Q_“,o, 1,0)} :
o
When the demand is uniformly distributed in the
interval (a, b), the expected profit of ordering the opti-
mal quantity equals

(b —a)U?

7T=au+2(—u+—o).

(We provide the derivation in the Appendix.)

For a numerical example of a normal distribution,
assume that the market demand for the product fol-
lows a normal distribution with a mean of 1,000 units
and a standard deviation of 500 units. In addition,
C,=C, =$%20, P, =$50, P, = $100 (thus both the sup-
plier and the retailer have the same $30 profit margin),
and V =$10.

If the firms act independently, U =30 and O=60,
so the retailer will order (using the Excel com-
mand NORMINV) Qf = NORMINV(30/(60 + 30),
1000, 500) = 785 units. The retailer’s expected prof-
its are ($30 + $60)[1000 - NORMSDIST((785 — 1000)/
500) — 500 - NORMDIST ((785 — 1000)/500, 0, 1, 0)] =
$13,638. The supplier’s profits are ($50 — $20)785 =
$23,550. Consequently, the total channel profits are
$13,638 4 $23,550 = $37,188.

Alternatively, if the two firms are considered as
one organization, U = 60 and O = 30, and the best
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Figure 4: Sensitivity analysis on the numerical example for the coordi-
nated newsvendor lot sizes with normally distributed demand shows that,
when all the other parameters remain unchanged, the percent of profit
increase hecomes larger when the coefficient of variation increases (by
increasing the standard deviation of demand). This suggests that the ben-
efits from channel coordination are greater when the demand has more
variability.

order size is QF = NORMINV (60/(30 + 60), 1000,
500) = 1,215 units. Total channel profits are ($60 +-
$30)[1000 - NORMSDIST((1215 — 1000)/500) — 500-
NORMDIST((1215 — 1000)/500,0,1,0)] = $43,638,
which represents a 17.34 percent improvement over
independent optimization.

Sensitivity analysis performed on this example by
altering the standard deviation (thus changing the
coefficient of variation) suggests that the value of
coordination increases as the uncertainty of demand
increases (Figure 4).

Suppose that the cost factors remain unchanged,
but demand is uniformly distributed between 5,000
and 15,000 units. Without coordination, the retailer
will set its order quantity at Q* = 5,000+ (15,000 —
—5,000)[30/(60+30)] = 8,333 units. Its expected prof-
its are 5,000($30) + [(15,000 — 5,000)($30%)]/[2($30 +
$60)] = $200,000. The supplier’s profits equal ($50 —
$20)8,333 = $249,990. Thus, the total channel profits
are $200,000 + $249,990 = $449,990.

Alternatively, if the two firms are considered
as one organization, Q* = 5,000+ (15,000 —5,000) x
[60/(30+60)] = 11,667 units. Total channel profits are
5,000($60) + [(15,000 — 5,000)($60%)]/[2($60 + $30)] =
$500,000, representing an 11.11 percent improvement
over independent optimization.
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Conclusion

Cooperation between supply-chain members may be
easier said than done. Chopra and Meindl (2001)
describe major obstacles to supply-chain coordina-
tion falling into five categories: incentive obstacles,
information-processing obstacles, operational obsta-
cles, pricing obstacles, and behavioral obstacles.
Taken to the extreme, our arguments here might
imply that firms should simply vertically integrate to
bypass certain obstacles and create the natural incen-
tive to cooperate throughout the supply chain and
thus to eliminate the inefficiencies that arise. How-
ever, most real-world companies do not vertically
integrate to an extreme, which implies that strong bar-
riers to vertical integration exist as well (Williamson
1985). Instead, forward-looking members of supply
chains are finding innovative ways to create a spirit
of cooperation.

A basic premise of supply-chain management is
that communication and coordination can greatly
enhance the effectiveness of the supply chain, creat-
ing financial benefits that the cooperating members of
the chain can share. Mechanisms to encourage coop-
eration can take a variety of forms, including quan-
tity discounts (Chopra and Meindl 2001). As with any
group of entities, when all members effectively inte-
grate their efforts, synergies may emerge. In supply
chains in particular, the actions of rational managers
of firms acting independently create natural ineffi-
ciencies that would not exist if the supply-chain mem-
bers coordinated their efforts. Numerical examples
can clearly illustrate these effects. We have collected
examples suitable for classroom use that arise in com-
mon areas where companies use and abuse power:
inventory control, pricing control, information con-
trol, control over the channel structure, and opera-
tions control (Munson et al. 1999). Similar examples
could be developed to address other issues, such as
transportation costs or joint advertising ventures. We
hope that future managers will recognize that success
in today’s global marketplace demands close attention
to all supply-chain functions and a constant search
for ways to work with supply-chain partners to bet-
ter compete together against other powerful supply
chains.

INTERFACES
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Appendix
Proofs for Example 5: Coordinated
Pricing with Multiple Supplier Tiers

The following propositions extend the coordinated
pricing strategy to a supply chain with one retailer and
N —1 single supplier tiers. Let 7, represent the system
profit under coordinated pricing, and let 7, represent
the system profit under uncoordinated pricing. Let C,
be the marginal cost of firm i (i=1,2,..., N) where
i =1 denotes the retailer, i = 2 denotes the retailer’s
supplier, i = 3 denotes the retailer’s supplier’s sup-
plier, and so forth. With the exception of firm N (the
most upstream member of the supply chain), C; does
not include the purchase price. Let P, denote the price
charged by firm i. The decision variable Q represents
the quantity sold to final customers, and Q* repre-
sents the optimal (profit-maximizing) quantity. The
retailer faces a deterministic linear demand curve of
the form P, =a—bQ (a,b > 0).

ProrosiTioN 1. If there is coordination among the N
firms,

1 N

Proor. If the N firms are considered as one orga-
nization, marginal revenue = a —2bQ, and marginal
cost = >, C;. Setting these equal yields the Q*
stated in the proposition. Plugging this into the
retailer’s demand function yields the retail price
Py = (a+3;C)/2. With no intercompany transac-
tions, the system profit is 7, = Q*(P,—).,C) =
(a—¥;C)*/(4b). D

ProrosiTiON 2. If there is no coordination among the

N firms,
* 1 N
Q= N <a—ile)

1 o E
e e (a =0 c,.) .

and

S
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Proor. The tier 1 supplier (i =2) knows that the
retailer will choose the quantity that equates its
marginal revenue (a —2bQ) with its marginal cost
(C, + P,). Solving for P, yields the derived demand
curve facing the tier 1 supplier: P, = (a — C;) — 2bQ.
Continuing in this fashion up the supply chain,

m—1
P, = (ﬂ — Ci> =Vl
i=1

for m=1,2,...,N. The uppermost supplier, N, has
a marginal revenue of

N-1
<a - Z CI) ’_szQ
i=1

and a marginal cost of Cy. Equating these and solving
for Q yields the Q* stated in Proposition 2. The profit
for firm m equals Q*(P,, — P,,.1 —C,,) (where Py, =0),
which reduces to

2m—2N+l i )2
a— Ci .
4b i=1

Summing these over all N firms produces a geometric
progression that reduces to the system profit stated in
Proposition 2. O

PrOPOSITION 3. The system percentage profit increase
from coordinated pricing wvs. individual optimization is
(@WN-2_2N 4 1)/(2N -1).

Proor. From Propositions 1 and 2, (7, —m,)/7, =
[1 — (22-N — 22-2N)]/(22-N — 22-2N) Multiplying ‘the
numerator and denominator by 22V~? yields the result
stated in Proposition 3. [

Proofs for Example 6: Two-Level
Newsvendor Problem

Lot Sizes. If the retailer acts independently, its
underage and overage costs are U, = P, —(C,+P,) and
0O, = (C,+P,) =V, respectively. The ratio U, /(O,+U,)
reduces to [P, — (C, + P,)]/(P, — V). If the firms coor-
dinate, the system underage and overage costs are
U =P,—(C,+C,) and O, = (C, +C,) — V, respectively.
The ratio U,/(O, + U,) reduces to [P, — (C, + C,)]/
(P,-V). O
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Expected Profit. Define f(x) as the density func-
tion of random demand X. Under independent opti-
mization, by adding the supplier’s profit to Chopra
and Meindl’s (2001) expected profit function for the
retailer, we obtain

Qi
m(@) = [ Uy~ (Qi = 00,1 (x) dx
+ [ QUL f @) dx+ (P, - CQ;
Qi

Qn
= a)o = E Wl EC

Alternatively, if the two firms coordinate, the
expected system profit becomes

Q&
m(Q) = [ U~ (Q - 0)0.]f (@) dx
+ [, QULF() dx

Qe
B (P e o (o V)f0 F(x) dx.

The profit change, A, due to coordination is 7(Q}) —
7(Q?), which reduces to

Qs
(P, = C, = C)(@: ~ Q) ~ (B~ V) [ Flx)dr.

To show that A7 is nonnegative, we utilize the non-
decreasing property of F(x), that is

Q: i
[FFwars(@r-oprigy = GRG0
Qi

1 r

Therefore,
Am = (P, —C-C) Q- Q)
=02 (= O n @ SR |
=0, O

Expected Profit for the Uniform Distribution. If
demand is uniformly distributed between a and b, the
expected profit of ordering Q units is

Q b
m(Q) = [Tl ~(Q-0Olf W+ [ QU (x)dx
Q
=QU—(U+O)] F(x) dx

X—a
b——adx'

=Qu—(u+0)/”Q
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The optimal Q* for the uniform distribution is a+
(b—a)[U/(O+ U)]; therefore,

7(Q) = U I:a-i— M]

U0
_u+o0 1[[1 (b—a)UT
V= 2 (U+0)

(b-—a)ul 1,

a[cH— W) +2a
3 (b—a)U?
=L e
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